A Theoretical Investigation on CO Oxidation by Single‐Atom Catalysts M1/γ‐Al2O3 (M=Pd, Fe, Co, and Ni)

نویسندگان

  • Tao Yang
  • Ryoichi Fukuda
  • Saburo Hosokawa
  • Tsunehiro Tanaka
  • Shigeyoshi Sakaki
  • Masahiro Ehara
چکیده

Single-atom catalysts have attracted much interest recently because of their excellent stability, high catalytic activity, and remarkable atom efficiency. Inspired by the recent experimental discovery of a highly efficient single-atom catalyst Pd1/γ-Al2O3, we conducted a comprehensive DFT study on geometries, stabilities and CO oxidation catalytic activities of M1/γ-Al2O3 (M=Pd, Fe, Co, and Ni) by using slab-model. One of the most important results here is that Ni1/Al2O3 catalyst exhibits higher activity in CO oxidation than Pd1/Al2O3. The CO oxidation occurs through the Mars van Krevelen mechanism, the rate-determining step of which is the generation of CO2 from CO through abstraction of surface oxygen. The projected density of states (PDOS) of 2p orbitals of the surface O, the structure of CO-adsorbed surface, charge polarization of CO and charge transfer from CO to surface are important factors for these catalysts. Although the binding energies of Fe and Co with Al2O3 are very large, those of Pd and Ni are small, indicating that the neighboring O atom is not strongly bound to Pd and Ni, which leads to an enhancement of the reactivity of the O atom toward CO. The metal oxidation state is suggested to be one of the crucial factors for the observed catalytic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphomolybdic acid supported atomically dispersed transition metal atoms (M = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au): stable single atom catalysts studied by density functional theory

By means of first-principles calculations, the interaction of twelve different transition metal atoms (M 1⁄4 Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au) of groups VIII–XI with phosphomolybdic acid (H3PMo12O40, PMA), a newly emerging medium for trapping transition metal atoms, has been systematically investigated. The M–PMA systems have very high stability with the binding energies of tr...

متن کامل

Activity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation

The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...

متن کامل

Activity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation

The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...

متن کامل

Enhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells

Here, metal nanoparticles were synthesized by chemical reduction of the corresponding metal salts in the presence of chitosan polymer. Binary and ternary metallic-chitosan Pt-Fe-CH, Pt-Co-CH and Pt-Fe-Co-CH nanocomposites were prepared. Transmission electron microscopy images and UV–Vis spectra of the nanocomposites confirmed the presence of the metal nanoparticles. The electrocatalytic activit...

متن کامل

CO + O2 and CO + NO Reactions over Pd/Al2O3 Catalysts

The kinetics of the CO + NO and CO + O2 reactions have been studied over several different Pd/Al2O3 powder catalysts covering a wide range of average Pd particle sizes. The structure-insensitive nature of the CO + O2 reaction over Pd has been exploited to determine the relative dispersions in several Pd/Al2O3 powder catalysts by measuring the rate of that reaction and normalizing against surfac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017